Did Skin Color Evolve as an Adaptation to Sunlight Intensity?

Human skin color is highly variable around the world. Recent research has suggested that skin color developed as an adaptation to cope with the damaging effects of sunlight.

However the huge migration of human skin colour groups around the globe in the last 500 years has led to problems with vitamin D deficiency causing rickets and osteoporosis, and to folate deficiencies causing birth defects and reproduction problems.

Various skin color groups are no longer living in the areas that their skins were adapted to. This combined with the trend for people to stay indoors, use sunscreens and get less sun exposure has meant that various skin colour groups have to take various actions to reduce the risks of health problems arising from sun exposure and their skin color. 

image1
Skin Color throughout the world. Source: Public Domain
image1
Human Races. Source: Public Domain
image1
Human Race Distribution. Source: Public Domain
image1
Human Races. Source: Public Domain
image1
Human Races. Source: Public Domain
image1
Human Races. Source: Public Domain

Human skin color ranges from a very dark brown among some Australians, Africans and Melanesians to a almost yellowish pink for some Northern Europeans. Skin tones of various groups of people tend to be color blends rather than true black, yellow, white or red, and these commonly used terms for skin color are generally incorrect and misleading.

--------------------------------------------

Fact - What Determines Skin Color

Skin color is primarily determined by a pigment named melanin. Both light and dark skin people have this same pigment. However, there are two forms firstly - pheomelanin, which is yellow to red in color, and secondly eumelanin, which is black to dark brown in color. People with light skin produce more pheomelanin, while those with dark skin mostly produce more eumelanin.

Also, individuals differ in the size and number of melanin particles. These aspects tend to be more significant in determining skin color than the kinds of melanin produced. In lighter skin, color is also determined by red cells in blood flowing close to the skin.


---------------------------------------------

Tanning - A response to increased sun exposure

Skin tanning is more obvious with light skin people, but dark brown skin can also tan due to prolonged exposure to the sun. Sunlight stimulates the pituitary gland which then release MSH (melanocyte-stimulating hormone). This hormone passes through the bloodstream to the melanocytes, causing them to generate more melanin. Since the pituitary gland is tied into the optic nerve, (the nerve in your eyes that lets you sense light), wearing sunglasses makes you tan less. The tanning response is a strong indication that skin color is very important in humans who have developed ways of changing skin color in response to sun exposure. This strongly suggests that the more permanent skin colour variations throughout the world is similarly adaptive and was an inherited trait selected to provide an advantage to various skin tones in various parts of the globe with varying sunlight intensity.

Skin Color Distribution Around the World

image1
Skin Color Distribution of Endemic Populations. Source: Public Domain
image1
World Solar Intensity Map. Source: Public Domain

Before the mass global migrations of people during the last 500 years, dark skin color was mostly concentrated in the southern hemisphere near the equator and light color progressively increased northwards away from the equator, as illustrated in the map. There is a strong correlation between skin color distribution and sunlight intensity.

Most of the dark pigmented people originally lived within 20 degrees of the equator. Most of the lighter pigmented people lived in the northern hemisphere north of the 20 degree latitude. Correlated with this distribution is the UV light strength which is highest at the equator where the sunshine is more intense. Conversely, populations in cold climates nearer to the poles commonly have light pigmentation. The relative intensity of solar radiation is largely responsible for this distribution pattern. There are some exceptions to this distribution. The Inuit people live close to the north pole and yet they have darker skin case. It appears that this may be related to their diet which has rich sources of vitamin D allowing them to have darker skin and get less of their vitamin D requirements from sunshine exposure.

Why and how have these skin colors patterns developed?

Neanderthals probably had light skin colors that were better adapted to the cold climate at the end of the last ice age. It is generally believed that the early modern humans that develop in Africa had black skin and migrated north and east to populated the rest of the world. Why did these human populations get lighter skin color as they moved north? The reasons appear to be related to evolution and natural selection in responses to changes in UV radiation and to the inheritance of genetic mutations. See more details about this later.

Why were black skins an advantage in early humans?

It is suggested that as early humans moved from the forests into the hot, open environments in Africa in search of food and water. On the open plains they faced a major challenge in keeping cool. The favorable adaptation was to increase in the number of sweat glands on the skin and to reduce the amount of body hair. With much less hair, perspiration could evaporate more easily and better cool the body. But this hair-less skin was a potential problem because it was exposed to the intense sunlight in the area near the equator. The adaptive response was to select for a skin that was permanently dark so as to protect against the damaging rays of the sun. While UV rays can cause skin cancer, such cancers develop after child bearing age and so are unlikely to be selective. Evolution and natural selection works on reproductive success, and so the adaptations much relate to other health effects (or perhaps appearance) improving the reproductive success of the darker skinned individuals.

At least six hypotheses have been proposed for skin darkening: (1) reducing sun damage to sweat glands and cutaneous blood vessels, (2) protection against skin cancer, (3) protection against overproduction of vitamin D, (4) camouflage, (5) better protection from microorganisms, and (6) protection to vital processes and essential molecules such folates in the blood that are associated with reproductive success. UV light is known to penetrate lighter skin and destroy folate molecules and this reduces reproductive success of both males and females.

Major Ways in which Skin Colour is Adaptive


The adaptive advantages of skin colour are related to:

Why are Lighter Skin colors an Advantage in Higher Latitudes?

Melanin in darker skins provides a natural protection for tropical populations from the many harmful effects of ultraviolet (UV) rays. UV radiation can destroy folic acid, causing a deficiency and leading to miscarriages and deformities in fetuses. However UV rays must penetrate the skin for the human body to manufacture vitamin D which is necessary for the body to absorb the calcium necessary for strong bones. This delicate balance associated with skin color appears to explain why groups that migrated away from the equator to areas with less sunlight adapted by developing lighter skin color.

Mutations

In conclusion, like many other evolutionary changes the adaptive changes in skin color appear to have developed due to a combination of inherited mutations and natural selection for variations in skin color.

Modern Migration Patterns Have Counteracted the Adaptations

Dark skin people who live in areas away from the equator, where solar radiation is relatively weak most of the year, have to cope with potential problems of vitamin D deficiency, potentially resulting in rickets disease in children and osteoporosis in adults. In the early 1900s people took cod liver oil to prevent the high incidence of rickets that developed because people stayed indoors and had very little sun exposure. In the United States and other coontries, milk and other foods are now usually fortified with vitamins D and A in order to prevent these problems. Recently malnutrition has been reported among children in the U.S. state of Georgia causing a high frequency of rickets disease, especially among African Americans. This previously rare condition, which is caused by vitamin D deficiency, appeared to be mainly due to three things: drinking milk substitutes that do not contain vitamin D, the failure to supplement breast milk, and insufficient exposure to sunlight.

The need for folate to be added to the diets of pregnant women is a further response to people with light skins living in areas where they have excessive UV exposure destroying the folate in their bloodstream.

Some researchers have also expressed concern that the use of sunscreens and the campaigns to keep people out of the sun may also be causing vitamin D deficiencies in lighter skinned people.

Clearly the modern migrations of populations has acted to counteract the adaptations in skin colors that developed to allow people to live at various latitudes. Various groups must act to overcome the problems caused by these migrations and modern lifestyles that have affected sun exposure rates and caused to increased risks of various health problems.

There is a lot of research available on this interesting topic.